Acceleration of Runge-Kutta integration schemes
نویسندگان
چکیده
منابع مشابه
Acceleration of Runge-kutta Integration Schemes
A simple accelerated third-order Runge-Kutta-type, fixed time step, integration scheme that uses just two function evaluations per step is developed. Because of the lower number of function evaluations, the scheme proposed herein has a lower computational cost than the standard third-order Runge-Kutta scheme while maintaining the same order of local accuracy. Numerical examples illustrating the...
متن کاملRunge-Kutta residual distribution schemes
We are concerned with the solution of time-dependent nonlinear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge-Kutta-type time stepping (discretisation in time). The introduced nonlinear blending procedure allows us to retain the explicit character of the time stepping ...
متن کاملNumerical smoothing of Runge-Kutta schemes
First we give an intuitive explanation of the general idea of Sun (2005) [1]: consistency and numerical smoothing implies convergence and, in addition, enables error estimates. Then, we briefly discuss some of the advantages of numerical smoothing over numerical stability in error analysis. The main aim of this paper is to introduce a smoothing function and use it to investigate the smoothing p...
متن کاملCentral Runge-Kutta Schemes for Conservation Laws
In this work, a new formulation for central schemes based on staggered grids is proposed. It is based on a novel approach, in which first a time discretization is carried out, followed by the space discretization. The schemes obtained in this fashion have a simpler structure than previous central schemes. For high order schemes, this simplification results in higher computational efficiency. In...
متن کاملTotal variation diminishing Runge-Kutta schemes
In this paper we further explore a class of high order TVD (total variation diminishing) Runge-Kutta time discretization initialized in a paper by Shu and Osher, suitable for solving hyperbolic conservation laws with stable spatial discretizations. We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even for TVD (total...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2004
ISSN: 1026-0226,1607-887X
DOI: 10.1155/s1026022604311039